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Abstract—An investigation of the effects of surface mass transfer on the viscous hypersonic shock layer of
a blunt body has been performed. Cheng’s theory of the Newtonian shock layer has been modified to
include both suction and injection, and extensive numerical results have been obtained for the injection
of air into air.

These results indicate that the heat-transfer and skin-friction reductions due to injection can be ade-

NOMENCLATURE

mass ratio defined by equation (27a);
skin-friction coefficient defined by
equation (29b);

heat-transfer coefficient defined by
equation (29a);

specific heat at constant pressure;
nondimensional stream function de-
fined by equation (24);

total specific enthalpy;

specific enthalpy;

Cheng’s hypersonic viscous similarity
parameter;

longitudinal curvature of the surface,
dp/dx;

thermal conductivity;

free-stream Mach number ;

pressure;
dimensionless
equation (22);
Prandtl number, C u/k;
gas constant;

pressure defined by
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quately represented by the standard boundary-layer correlation formula for all but extreme low-density
flows. As the Reynolds number decreases, however, mass transfer becomes ineffective in reducing heating
rates and skin friction, especially for a very cold wall. The effect of nonzero wall temperature is to increase
the shock-layer thickness dramatically, and there are also indications that the wali-temperature level
determines whether the asymptotic inviscid-shock-layer thickness is approached from above or below.

Re, Reynolds number;

Rey,  polioRn/1o;

Ry, noseradius;

s, distance along stream function, i ;

T, temperature;

T,, reference temperature, =(T, + T)/2;

u, velocity component in x direction;

i, dimensionless velocity defined by equa-
tion (22);

v, velocity component in y direction;

X, curvilinear coordinate;

Vs coordinate normal to x axis;

Z, distance from the body surface to the
axis of symmetry, = Ry cos B.

Greek symbols

B, shock angle;

A ratio of specific heats;

A, shock standoff distance;

6, (v — D/2y;

€ density ratio, p,/p, = (y — DAy + 1);

", Howarth-transform variable defined
by equation (23);

0, dimensionless total enthalpy ratio de-
fined by equation (22);

0, temperature-gradient parameter ;
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T VISCosity ;

v, zero for planar flow and unity for axi-
symmetric flow;

dimensionless coordinate defined by
cquation (23);

Uye

p. density :

Q. dimensionless  tangential pressure
gradient defined by equation (25);

v, stream function in von Mise’s trans-
formation defined by equations (15)
and (16).

Subscripts

0, stagnation condition;

S, distance at shock;

w, condition at wall ;

2, free-stream condition;

- reference condition ;

1, condition in front of shock ;

2, condition immediately behind shock

(shock interface).

1. INTRODUCTION

HYPERSONIC viscous interactions on both slender
and blunt bodies have been observed in low-
density shock tunnels and wind tunnels during
the past decade. These interactions, involving
phenomena which are not contained within the
usual framework of boundary-layer theory, have
also been studied theoretically. There is a
substantial body of analytical work available
which modifies classical boundary-layer theory
to include interaction effects [ 1, 2].

Asinterest develops in the possible application
of lifting vehicles capable of operation at high
lift-to-drag ratios at high altitudes, these prob-
lems of hypersonic viscous interaction move
from the reaim of academic interest to the
realm of practical design considerations, which
may be relevant to estimates of aerodynamic
drag and heat transfer, as well as detailed flow-
field structure.

The objective of this memorandum is to
investigate the effects of surface mass transfer
upon the viscous flow in the stagnation region
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of a vehicle in hypersonic flight at the upper
edge of the continuum-flow regime. Stagnation
enthalpy is high, but the lower density of the
ambient air results in a thickening of the
viscous layer. and interaction occurs between
the boundary layer and the hypersonic shock
layer. The usual concept of an outer inviscid
flow determined by the body radius and the
equilibrium shock conditions which provide the
outer boundary conditions for a stagnation-
point boundary-layer analysis is no longer valid.
It becomes necessary to modify the Rankine--
Hugoniot shock conditions to include the effects
of viscous shear and heat conduction behind the
shock. This modification requires a coupling
between the boundary layer and the shock layer.
Vorticity, which is generated by the shock layer.
affects both shear stress and heat transfer.
resulting. for example. in heating rates which
are larger than those predicted by boundary-
layer theory.

There are several different approaches to
the study of hypersonic viscous stagnation
flow. ranging from the complete higher-order
boundary-layer theory of Van Dyke [3]. Kao
[4] and Maslen [S]. which includes effects of
vorticity interaction, slip, curvature and dis-
placement thickness. to the integration of the
Navier-Stokes equations performed by Levinsky
and Yoshihara [6]. The approach which seems
both tractable and relevant to the hypersonic
cold-wall application is the viscous Newtonian
thin-shock-layer theory. This theory, proposed
by Cheng [7] and applied by him to a number
of problems, has recently been given more
formal treatment by Bush [8]. Bush has used
the techniques of singular perturbation theory
and matching asymptotic expansions to develop
simplified equations, derived from the Navier—
Stokes equations, involving six different layers,
each with different variables. Cheng’s theory,
which essentially involves two layers, a thin
shock-transition zone and a viscous Newtonian
shock layer, is remarkable both for its simplicity
and for its ability to yield the proper behavior
for heat transfer in both the boundary-layer and
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free-molecular limits. From the viewpoint of
the designer, this is particularly useful, since it
implies that it is not necessary to differentiate
among the various flow regimes (boundary
layer, vorticity interaction, transition, free mole-
cule, etc.) in order to determine the appropriate
theory for the calculation of heating rate. As
long as the correct value of Cheng’s similarity
parameter is used, this single theory can be used
to give a uniformly valid estimate of hypersonic
heating rates at all altitudes.

The theory approximates the Navier—Stokes
equations by boundary-layer equations which
have been corrected for the centrifugal pressure
gradient and which are valid between the body
surface and the thin bow wave. The jump con-
ditions across the shock wave are modified by
the inclusion of viscous corrections. Hence,
conditions behind the shock wave are not known
until the entire flow field has been calculated.

This thin-layer approach permits the elliptic
Navier-Stokes equations in the shock-layer
region to be simulated approximately by a
parabolic set of equations. The pressure-gradient
terms are kept in both the normal and longi-
tudinal momentum equations in order to insure
the uniform validity of the-theory at higher
Reynolds numbers. The inclusion of the pressure-
gradient term in the direction along the wall is
important to the success of the theory in
describing the vorticity interaction and
boundary-layer regimes, where the pressure
gradient along streamlines is small in the outer
parts of the shock layer but important in the
regions closest to the wall.

The present treatment of mass transfer into
the hypersonic viscous shock layer is restricted
to the injection of air into air and neglects all
chemical effects by assuming that the equation
of state is that of a single-component ideal gas.
Certain higher-order effects, such as slip and
temperature jump, are neglected. The viscosity—
temperature law is assumed to be linear, through
the use of a reference temperature based on the
mean of the temperature behind the shock wave
and the wall temperature. Cheng [9] has already
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demonstrated the accuracy of this last approxi-
mation in the context of viscous thin-shock-
layer theory.

2. GOVERNING EQUATIONS AND
BOUNDARY CONDITIONS

Cheng [ 7] has shown how the Navier-Stokes
equations for flow past a blunt two-dimensional
or axisymmetric body can be treated in two
adjoining layers, a thin shock-transition zone
and a viscous shock layer, if '

1
—t e+

1
Re, <

M,
where Re, is a modified free-stream Reynolds
number, ¢ is the density ratio, M is the free-
stream Mach number, 1/Re, is an estimate of
the ratio of the shock thickness to body radius,
and (¢ + 1/M2) is an estimate to the ratio of
shock-layer thickness to shock radius, 4/Rg. If
the layer is thin, then 8/0x < 0/0y, y/Ry < 1,
and the following equations are valid for the

description of the shock-transition zone (see
Fig. 1):

Body surface

AN \\
N ~o
Free stream = Shock interface

F1G. 1. Coordinate system for the shock and the body.
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(pv), = 0. (nH
pru, = (pu ), (2)

p, + pre, = $ur,),. (3)

u? + ¢?

pv(h+»—2 >‘
N h w2, 4
MRt @

A gas with zero bulk viscosity has been assumed.
The equations for the viscous shock layer, under
the assumptions that d/0x < ¢/dy and that there
1s strong shock compression, become

(puZ®), + (pv2l”), =0

+ u (Q + e u
e .0
Pe T P\UE T Yy

continuity  (5)

= (uu,), tangential momentum 6)
py + pKu?* =0 normal momentum  (7)
u d + d H
Plox pva
T u’
.—:{ B [H — (1 —~ Pr) ?]‘}r energy (8)
where

H, totalenthalpy = C,T + (u® + v?)/2;

h,  static enthalpy = C,T;

longitudinal curvature of the reference
surface, df/dx;

Pr, Prandt] number;

p.  pressure;

u,  velocity component along the x axis;

v,  velocity component along the y axis;

Z. distance between reference surface and
the axis of symmetry;

B. angle of incidence of the reference
surface;

s viscosity ;

v.  unity for axisymmetric flow and zero
for planar flow;

p.  density;

and where K uvp and other higher-order terms
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in v have been neglected. In addition. the
ideal-gas law is assumed :

p = pRT. 9)

The boundary conditions at the free stream
are

P = Po P = DPu
u = u,cosp, h=hg,, (10)
» = —u,sinf.

Integrating equations (1-4), introducing {ree-
stream conditions from equation (10), and neg-
lecting higher-order terms in v, yields

(11)

Pals = — Pyl SiN P
— Pl Sin Bluy — uy, cos f) = (uu), (12)

(13)

—_ 2 in2
P2 = Pl SIN B

Pl sin ﬂ(HZ - Hao)

_fu _pa ¥
—{P—rl:H—(l Pr)z]y}z (14)

where the subscripts oo and 2 refer to the
conditions at the free stream and shock interface,
respectively. :

Equations (11-14) are modified Rankine-
Hugoniot conditions and indicate how the
shock-jump conditions are modified by the
effects of shear stress and heat conduction.

If the von Mises transformation is introduced,

_6_:& = pu(2rnZ)® (15)

= —pu2nZ)’ (16)

dy

oy

0x

and x is replaced by s. then equation (5) is

automatically satisfied and equations (6-8) can
be reduced to

1 dp ou

-y = 2v a_u
2 3s + uas 2nZ) u(upualp)w 17
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W= @2y (18)
oH _ 2v __(Z_ ya
35 = @rd) aw{Pr"“

x [H — (1 — Pr) 3;] } (19)
17

These equations are those of a classical
boundary-layer theory with the addition of a
centrifugal pressure gradient across the shock
layer. Mass transfer from the body surface is
assumed to be in a purely radial direction, so
that on the body surface the boundary con-
ditions are

u=0 H=H,

. (20)
PY = Py by, SN B

at
Ww = __(,Kz)v pw,vwaZ'

Since sin f =~ 1 in the stagnation region, this
distribution of mass transfer corresponds to
pv = p, v, at the stagnation point.

In von Mises’ variables, the modified shock
conditions of equations (11-14) become

PV = —p U, sin f, I
upu  ou.
= — QrZy — P 2
u=u,cosf — (2n2) Py S f ov
- 2 2
P = Poliy SIN B? >”(21)
ppu 0
= - 2nZy ———X———
H=H,—(n )Prpmuwsinﬁﬁzlf
u2
X [H + (Pr — 1)-—2-]

Y

and are the outer boundary conditions to the
shock-layer equation, to be applied at Y, =
(RZ)Zp .

Equations (17-19) subject to the boundary
conditions of equations (20) and (21) are the set
of equations governing the flow in the hyper-
sonic viscous shock layer.

In order to perform a stagnation-line analysis,
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it is convenient to use the variables of boundary-
layer theory, n and f.
First, dimensionless quantities are introduced

p= Pl sin? f’ " u_cosf
H-H (22)
"CH.oH

In the stagnation region, 8 ~ n/2, and the
pressure is independent of i, while the tan-
gential pressure gradient is a function of both
¥ and x. A tangential pressure gradient is
included to insure that the flow at the base of
the shock layer goes over to the correct flow at
the edge of the boundary layer when the
Reynolds number is large. The new independent
variables are

s
*"Ra
I (23)
n=Ki+w| LY
Po By

and the new dependent variable is

K Y
(1 + W ol Z(nZ)”
A linear-velocity law, u = u, T/T,, is assumed

where u, is evaluated at T, a reference tem-
perature. Equations (17) and (19) then reduce to

)= (24)

1
#7 + 2 + 17
! 1+ vf ¥

e H, H,
- [Ees(i- e e

0"+ Prf0=0 (26)

where

s
1 7.
¢ = 2{1 +mjf2d?}].
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In boundary-layer theory, ¢ is a constant in the
stagnation region. In the present theory, ¢ varies
with the distance variable n and indicates the
varying tangential pressure gradient due to the
longitudinal curvature of the streamlines. If ¢
were constant, then equations (25) and (26)
would correspond to the ordinary stagnation-
point boundary-layer equations. With the in-
clusion of the varying tangential pressure
gradient, equation (25) is somewhat more com-
plicated than the corresponding boundary-layer
equation.
The important new parameter involved in the
solution ist
Kz - 14 oouooRNeﬂk
/J'* TO
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2!
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g 8

]
v
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FiG. 2. Similarity parameter K? as a function of altitude
(for all hypersonic velocities).

where T, refers to the stagnation temperature
immediately behind the shock transition and is
always less than the free-stream stagnation

t Cheng’s hypersonic viscous similarity parameter (Fig.
2).
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temperature because of the nonadiabatic shock
transition, T, is a reference temperature, and ¢
is defined as (y — 1)/2y. If T, is taken as
(T, + Ty)/2 and p, is assumed to follow Suther-
land’s law at reference temperature T,, then K?
is a function only of altitude and nose radius
for cold wall conditions. In other words, K? is
not a function of velocity in the hypersonic flow
regime, as shown in Fig. 2.

The associated boundary conditions at the
body surface are

K p,v
0 = Wo~ " Wo
7O (1 +)F puy
K S
= T B normal injection (27a)
f0)=0 zero velocity slip (27b)

6(0) = 0 zero temperature jump. (27c)

The boundary conditions at the shock location,
where n = 5, are

K
f(’?s) = m mass flow (28a)
, (1 + v)?
— 1 _ 1,
fn) = 1"(n)
viscous shear (28b)
o 4w
bn) = 1 — 0,
heat conduction. (28c¢)

Equations (25) and (26) comprise a fifth-order
system and require five boundary conditions.
The additional boundary conditions of equa-
tions (27) and (28) are used to determine n, the
location of the shock wave.

The heat-transfer coefficient Cy is defined as

_ —kJ0T/oy)
" poouoo(Hao - Hw)

or

1+l

Cy= “Pr E(e ),,=o (29a)
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while the skin-friction coefficient

2 du
¢ =r(vgy), oo
becomes
Cr 1
= 2(1 — £(0).
os B (I+v) Kf () (29¢)
The shock standoff distance, 4, can be expressed
as
4 H)\ |
4_f -4y 2w
Ry K(l +v) 1 H. 6dn
)]

€ _H,

3. DISCUSSION

The ordinary differential equations, equations
(25) and (26), and boundary conditions, equa-
tions (27) and (28), were solved numerically on
an IBM 7044 by employing the Adams-Moulton
variable-interval integration technique and the
Newton—Raphson convergence method (see Ap-
pendix).

The blowing rate B was varied from -1,
corresponding to massive injection, to +03,
corresponding to suction. The case of suction
was included in order to simulate the effect of
leakage from the high-pressure air in the nose
shock layer into the interior of the vehicle. This
could occur if transpiration-cooling techniques
were used and the coolant chamber pressure was
not large enough to pump air into the shock
layer, or if small gaps due to thermal expansion
and deflection were formed in a nose shield.

The majority of the calculations were per-
formed for an extremely cold wall, where
H,/H, ~ 0. Several additional sets of calcula-
tions were performed using a moderately cold
wall, H /H _ =~ 03, in order to investigate the
effects of nonzero wall temperature and to
determine under what conditions the cold-wall
results were a good approximation of finite wall
temperatures.
4D
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The similarity parameter K2 was varied from
0-1, corresponding to the extreme low-density
regime, to 10%, corresponding to the boundary-
layer vorticity-interaction regime. No special
precautions were taken in the calculation pro-
cedure to differentiate among these different
regimes. The boundary-layer structure at large
values of K? was calculated using the same
techniques as those employed at low values of
K2, where no boundary layer is formed.

Temperature gradient 8'(0) and skin-friction para-
meter "(0)

The nondimensional temperature gradient at
the wall 6(0) is shown in Fig. 3, while the skin-
friction parameter f"(0) is shown in Fig. 4. At
low values of K?, injection rates of the order of
the free-stream mass flux (B ~ — 1) are necessary
to significantly decrease the heat transfer and
skin friction from the zero-mass-transfer value.
In the free-molecular limit (K2 — 0), mass
injection has no effect on heat transfer from a
cold wall (H,/H,, = 0) if the energy accommo-
dation coefficient is unity. It thus appears that
this theory gives the correct limiting results for
heat transfer to a very cold wall as the flow
becomes free molecular, whether or not mass
transfer is included. At high values of K2, it
seems clear that much smaller mass flow rates
(B ~ —0-1) are capable of reducing heat transfer
and skin friction to values which are much lower
than the zero-injection values. In particular, for
the zero-temperature wall, a point of zero skin
friction seems to be reached for fixed B and
finite K2 On the other hand, the few points that
have been calculated here for the finite-tem-
perature wall at a constant value of B (B =
—01) seem to indicate that the point of zero
skin friction is reached asymptotically as K —
oo. This s true for the stagnation-point boundary
layer if the wall temperature is nonzero. At large
values of K2 the flow structure should be well
described by the usual theory for an inviscid
shock layer and a viscous boundary layer.

Note that equation (25) in the neighbourhood
of the wall (n = 0) becomes (if H,,/H,, = 0)
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S =0

the Blasius equation, subject to the injection
boundary condition,

KB

f0) = +(1—+"'

o
and the no-slip condition becomes f'(0) = 0.

It is well known that solutions of the Blasius
equation indicate a blowoff point (zero skin

friction) at a finite value of f(0) = —0-876,
corresponding to KB = —1-23 for zero skin
friction. Extrapolation of present results to the
point of zero skin friction[f(0) = 0] at a fixed
value of the blowing rate implies that the skin
friction is zero at KB ~ —1-15, even at low
values of K (K? = 33). There secems to be
remarkably little effect of the wall-temperature
ratio H,/H _ on the temperature gradient while
the skin-friction parameter increases with the
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wall temperature. These results are known for
ordinary stagnation-point boundary layers, and
their extension to the hypersonic viscous shock
layer is not unexpected.

Shock standoff distance

The shock standoff distance, 4/Ry, is pre-
sented in Figs. 5 and 6. While the calculations
were performed at sufficiently small values of
K? such that fixed B and K? - oo are not
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entirely relevant, a few comments about this
limit are in order. If Bis fixed and K — oo, then
the flow in the shock layer should be purely
inviscid and consist of an outer layer of shocked
gas and an inner layer of injectant, separated by
a slip surface. Under these conditions, and par-
ticularly for H,/H, < 1, the injection layer is
dominated by the tangential pressure gradient,
while the outer layer is dominated by the centri-
fugal pressure gradient. The tangential velocity

009 TToa
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F1G. 5. Effects of mass injection or suction on shock standoff distance.
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FiG. 6. Effects of similarity parameter on shock standoff distance.
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ratio u/U  in the inner layer is of the order
V/(H,/H ), while the density ratio p/p,, in the
inner layer is of the order H _/H,,. Consequently,
the thickness of the injection zone is proportional
to 1/pu, or \/(H,/H,), and the asymptotic
standoff distance should increase with increasing
wall temperature from the zero-injection value.
If H,/H ., is zero, then these estimates indicate
that the injection zone has zero thickness. The
results shown in Figs. 5 and 6 have the following
properties:

1. When the mass flow rate is fixed and the
wall temperature is zero, the shock standoff
distance increases with increasing K, seeming to
approach an asymptotic limit. Similarly, if the
density level (K) is fixed and the wall temperature
is zero, then the shock standoff distance shows
an almost linear variation with blowing rate.

2. The effects of nonzero wall temperature are
most pronounced in the fully viscous regime
[K?* ~ 0(1)]. where an increase of wall tem-
perature from 0 to H, /H, = 0-3 results in an
increase in shock-layer thickness from 0052 to
0-075. While the calculations for zero wall
temperature show that the shock-layer thickness
indicates an increase in 4/Ry as K? is increased
for fixed B. this is no longer true if a finite wall
temperature is considered. For the case calcu-
lated (H,/H, = 0-3), the standoff distance de-
creases with increasing K? and seems to be
approaching an asymptote higher than the
zero-temperature calculations. As K? — <o, this
is to be anticipated in the light of the earlier
discussion. For a fixed B (B = 0-1), there is only
a small decrease in 4/Ry as K? increases from
I to 100.

At a given altitude, velocity, and wall tem-
perature, K? is a function of the blowing rate B,
since the reference conditions employed in the
temperature—viscosity relation are based on
conditions behind the shock wave, which are
affected by the injection. This point will be
discussed again later.

Skin-friction and heat-transfer coefficients
In ordinary boundary-layer flows with mass
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transfer Cy/Cy, and Cp/Cg , the heat-transfer
ratio and skin-friction ratio based on reference
conditions of zero mass transfer, are a function
only of the blowing rate B multiplied by the
square root of the appropriate Reynolds number.
Since Cr, and Cy, are equal to constants
multiplied by the square root of the same
Reynolds number, then Cr/C, and Cy/Cy_ are
functions of B/Cg, and B/Cy , respectively. An
attempt has been made to use the same para-
meters in Figs. 7 and 8. However. in the hyper-
sonic viscous thin-shock-layer theory, the de-
pendence of Cp, and Cy_ on K? is not known

i 1
| /lO o
€«=0-
+6 zg Prs07I
/ My
4 v g "0
e/ =l
|
S A |
§ P2 rg (
Suction
0 ‘\
g Injection
\
S o8 \\‘ o1 K2
3 \\ ~0
§ N
= os <
2
x 04 \\
--=-= Reshotko~Cohen (10] N
02 —F>
-
| 3,
o 02 04 06 08 10 12 T4 i
lﬁl/C;.,o
F1G. 7. Effects of mass injection or suction on heat-transfer
coeflicient.

explicitly, and consequently, Figs. 7 and 8 are
presented as a convenient means of correlating
all of the cold-wall calculations. The correlation
becomes exact as K? increases and seems to go
over to the results of Reshotko and Cohen [10].
In the low-density regime, K2 =~ 01, the corre-
lation indicates the decreased effectiveness of
mass transfer in reducing heat transfer, but for
K? > 1, the correlation curves show that
boundary-layer calculations, when presented in
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F1G. 8. Effects of mass injection or suction on skin-friction

coefficient.

the form of Fig. 7, may be useful at much lower
densities than might be anticipated.

Velocity and temperature distributions
The velocity ratio f* and the shear parameter

J'' are shown in Fig. 9 for varying mass-flow
ratios and different values of K2, for the zero-
temperature wall. The boundary-layer nature of
the flow at large values of K? is clearly shown,
while the fully viscous nature of the shock layer
at low values of K? is also indicated. Mass
transfer does not seem to change the postshock
conditions very much, even at low values of K?2.
This is also true of the temperature function 6,
which is shown in Fig. 10. This lack of sensitivity
of 0 to mass transfer permits the use of a reference
temperature T,, which is based on the calcula-
tions for zero mass transfer. Consequently, at
given free-stream conditions and nose radii, the
parameter K2, being only weakly dependent on
the blowing rate, can be approximated by its
zero blowing value.

Atlow values of K?, injection rate comparable
to the free-stream mass flow have a small effect
on a shock layer which is completely viscous.
The bow shock is pushed off, but the profiles
exhibit no distinguished behavior. However, as
the density is increased, and the more con-
ventional boundary-layer-inviscid-layer profiles
are obtained, dramatic changes in the profiles
are caused by the injection. The shock wave
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does not seem to be pushed off very much by
the injection, but there is clearly a large outer
inviscid zone of small but constant shear and
zero heat conduction, and then an intermediate
thinner zone of large shear and heat conduction.
The region closest to the wall seems to be
included in this “shear layer”, but the tempera-
ture gradient and shear at the wall are much
lower than those in the center of the shear layer.
However, there does not seem to be an appreci-
able regime near the wall where the heat con-
duction and shear stress are small; ie. there
does not seem to be an additional inviscid
region near the wall. As noted earlier, the
blowing rates employed were not sufficiently
large to “‘blow off” the boundary layer.

The velocity, temperature, shear parameter,
and conduction parameter ¢ are shown in Figs.
11 and 12 for a nonzero wall temperature
(H,/H,) = 03. At a fixed value of y, or at a
fixed distance from the wall, # for the zero-
temperature wall is much greater than that for
the finite-temperature wall. However, the tem-
perature ratio 7/To= H /H_  + (1 - H /H_)0
is not very different for both cases if K* and the

mass-transfer rate are fixed; 6 at the wall
seems to be almost independent of the wall
temperature, but the distribution of §' seems to
be somewhat fuller with increased wall tem-
perature.

In the lower-density regime, where K ~ 0(1),
the effect of nonzero wall temperature is
primarily to increase the extent of the shock
layer. As in the case of zero heat transfer, the
temperature at the shock wave seems to be only
weakly affected by mass transfer. At large K2,
the finite temperature at the wall prevents the
shear from decreasing significantly, since the
pressure gradient acts to augment the skin
friction in this case, while the infinite density at
a zero-temperature wall renders the pressure-
gradient effect negligible.

4. CONCLUSIONS
The theory developed by Cheng for the
hypersonic viscous shock layer has been modi-
fied to include the effects of surface mass transfer.
In addition, the theory for zero mass transfer
has been applied to obtain numerical solutions
for larger values of the similarity parameter K2
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than have been considered previously. Cheng’s
theory retains all the terms involved in the
six-layer asymptotic expansion formulation of
Bush, and through care and perseverance in
computation, numerical results have been ob-
tained for values of K? between 0-1 and 103,

1155

The boundary-layer nature of the flow field
at large values of K? contrasts with the fully
viscous flow field at low values. The effects of
mass transfer are to thicken the shock layer and
decrease the heat transfer and skin friction.
However, the results show that mass transfer is
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ineffective in modifying the temperature and
velocity profiles to reduce heat transfer and
shear stress when K? < 1; for values greater
than 1, the boundary-layer correlation formula.
Cy/Cy, = function of B/Cy,, is useful for cor-
relating the heating rate. Conditions behind the
shock wave, which are considered as unknowns
in this theory, are insensitive to mass transfer.
so that the reference conditions involved in the
computation of K? can be obtained from the
results for zero mass transfer.

The effects of nonzero wall temperature are
most pronounced for small values of K?, where
the shock-layer thickness is increased dramati-
cally. There is a definite suggestion in these
calculations that the increase of shock-layer
thickness with increasing density (K2 — o0) is
only true for very cold walls. For walls that are
not so cold, on the other hand, the shock layer
seems to be thickest in the low-density limit
(K? < 1) and approaches its asymptotic value
for K2 —» o0 from above.
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APPENDIX

Numerical Integration Technique

The computer program was written in
FORTRAN IV for the IBM 7044. The numerical
integration technique employed was fourth-
order Adams—Moulton with a variable step size.
Runge-Kutta is used to start the integration.

The convergence scheme used a modified
Newton—Raphson type of iteration to converge
to the boundary conditions at ng. There are
actually four boundary conditions, since ¢ must
be reconstructed :

] ns

o e[ o)
Now if
= =Trran+[r2an
then Z’' = f'2 may be written with the boundary

condition Z(n,) = 0. The state variables are
then f, f', ", 0, €, Z. Boundary conditions at
n = 0 are given for f, f°, 6, but the values for
[, @, Z which will satisfy the boundary con-
ditions at ng must be found. If one of the
boundary conditions is chosen as a “stopping
function” (£2), there remain three boundary
conditions {y;} which must be met. These were
selected as follows:

K
ST i
| (1+v)f,, p
W =1, (e, =0
= "PrK -9
VA
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f 14
and state variables {X;} =4 6’
z

A set of initial trial values must be given for the
{X:}y=0, then the differential equations inte-
grated to the point where the stopping condition,
Q =0, is met. Usually the boundary values
{¥,} # O the first time, and a new set of values
for the {X},-, must be found. This is done by
computing a change in {X;},-, which will
improve the initial estimates:

{AX;},,=O = [F]7!' [W]{4¥i}a-o

The [F] matrix is the matrix of partial deriva-
tives of the boundary conditions at Q =0
with respect to the state variables {X,} at
n=20:

for convenience.

X, 0X, 0X,

_| 9y Y, Y,
[F1= X, 0X, 0X,|
0ys 03 0¥y

LaXl 6X2 aX:,_

These were found numerically by perturbing
the {X} one at a time.
The [W] matrix is a weighting matrix which
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consists of only elements along the diagonal.
Normally the unit matrix is used.

The {4 ¥,}a-, are the errors in the boundary
conditions.

In conclusion, it must be pointed out that the
convergence technique did occasionally ‘‘hang
up”, usually for the following reasons:

1. The numerical partial derivatives were not
accurate. Solution : use smaller perturbations.

2. The changes in the {¥;} became too non-
linear. Solution: reduce [ W].

3. The initial estimates for the {X },-, were too
far off. The expression *‘too far off”’ cannot be
better defined, but it seemed to make much
more difference what the initial trial values
were when higher values of K? and B were
used. Solution: run cases with small values
of K? and B first and extrapolate to get a
better estimate. (This was done off the
machine.)

4. The integration became unstable. Solution:
tighten the constants for error control in the
integration routine.

It was sometimes difficult to distinguish
between type 2 and type 4 difficulties, because
type 4 could cause the nonlinearity of changes
in the {y;}.

Résmmé— Une étude des effets du transport de masse superficiel sur la couche de choc hypersonique
visqueuse d’un corps arrondi a été faite. La théorie de Cheng de la couche de choc Newtonienne a été
modifiée pour inclure 4 la fois I’aspiration et I'injection, et I’on a obtenu de nombreux résultats numériques
pour 'injection d’air dans l'air.

Ces résultats indiquent que les diminutions de transport de chaleur et de frottement pariétal dues &
I'injection peuvent étre représentées d’une fagon adéquate par la formule standard de corrélation de la
couche limite pour tous les écoulements a basse densité sauf les cas extrémes. Cependaat lorsque le nombre
de Reynolds décroit, le transport de masse devient inefficace pour réduire le flux de chaleur et le frottement
pariétal, spécialement pour une paroi trés froide. L'effet d’'une température pariétale non-nulle est d’aug-
menter considérablement 1’épaisseur de la couche de choc; et il semble que la valeur de la température
pariétale détermine si I'épaisseur de la couche de choc non visqueuse asymptotique est approchée par

au-dessus ou par en-dessous.

Zosammenfassung—Fir die zihe Hyperschallstossschicht wurden die Einfliisse des Stoffiberganges an
der Oberfliche cines stumpfen Korpers untersucht. Die Theorie einer Newtonschen Stossschicht von
Cheng wurde modifiziert, um sowohl Absaugung als auch Einblasung zu umfassen. Eine Vielzahl numer-
ischer Ergebnisse wurde fiir die Einblasung von Luft in Luft erhaiten.

Diese Ergebnisse zeigen, dass die Abnahme des Warmeiiberganges und der Oberfliichenreibung infolge
der Einblasung durch die iiblichen Grenzschichtkorrelationsgleichungen filr alle Fiille angemessen wieder-
gegeben werden kdnnen, mit Ausnahme von Stromungen bei extrem kleiner Dichte. Bei abnehmender
Reynolds-Zahl verliert aber der Stofftransport scine Wirkung Aufheizung und Oberfldchenreibung
herabzusetzen. Das gilt besonders fiir sehr kalte Winde. Der Einfluss bei Wandtempraturen, die von null
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verschieden sind, geht dahin die Stossschichtdicke stark zu erhohen. Es liegen auch Anzeichen vor, dass
die Grosse der Wandtemperatur bestimmend dafiir ist, ob die Anndherung an die asymptotische nichtzéhe
Stossschichtdicke von oben oder von unten erfolgt.

AnHoTanuA—IIpoBeJeHO MCCIEJOBaHME BIMAHNA KOHBEKTHBHOTO ITOBEPXHOCTHOTO MacCO-
ofMena Ha TUNEP3BYKOBOM yAapHHIA cIoffi BA3KOH upxocTH BOIM3M TYMOHOCOTO TeJa.
Mopguuipuposannan reopusa JeHra A yAaPHOTO CIIOA HbIOTOHOBCKOM UJKOCTH yINTHIBAET
orcoc u BRyB. Ilonydeno GoJbiloe KOJMYECTBO YMCIOBBIX TAHHBIX [JA BAYBa BO3AyXa B
BO3AYX.

PeaysbTaTel HOKA3LIBAIOT, YTO CHUM(eHHE KOBPOHUMEHTOB TEINIOOOMEHA M IOBEPXHOCTO-
HOro TpeHusi, 06CIOBIEHHOE BIYBOM, MOMHO OGOGIIMTE ¢ MOMOMIBI0 OOHYHOrO ypABHEHMA
IOTPAHUYHOrO CJIOA JIJIA BCeX TeYeHHMU 33 MCHIIOUEHHEM MUJKOCTeH ¢ OYeHb HU3KOU ILIOT-
HocThI0. OHAKO, NpY yMeHbLIEHUU 4ucia PefHONbICA, MACCOOOMEH He CHHUMAET CKODOCTH
HarpeBa U x03)uUKEHTA ITOBEPXHOCTHOTO TPEHMA, 0COGEHHO NJIA OYeHB XOJOAHON CTCHKHM.
Bausuue cTeHKE ¢ TeMIieparypolf, OTIIMYHONW OT HYJIA, 3aKIIIOYAETCA B YpPE3MEpHOM YBeIH-
YeHUW TONIMHBI yaapHOro ciodA. ITokasano, YTO TeMIepaTypPHEIN PeUM CTEHKH yHKasblBaeT
Ha npbimKeHMM K AacCUMOTOTHYeCKOW TONIMHE HEBASKOrO YJAapHOTO CJIOA  CBepXy

WJIM CHU3Y .



